Aerodynamics is the science of moving air and its impact on solid bodies placed in the flow field as an obstacle. Being a sub-field, most of the equations from fluid dynamics apply to aerodynamics as well, including all the governing equations, turbulence, boundary layer theory, and ideal gas assumption.

## History

Although wind had been widely used as a tool by humankind (windmills, sailboats) already, the beginning of the scientific study of aerodynamics only dates back to the seventeenth century. The dream of flight and a machine that is “lighter than air” was already present in ancient history. Very early attempts to describe flow quantities appear in the work of Aristotle and Archimedes, however the scientific field “aerodynamics” does not appear in their notes.

The very first aerodynamicist was Sir Isaac Newton, who developed and described the theory of flow resistance, also known as drag. Further famous scientists such as Bernoulli, Euler, Navier, and Stokes gave more precise and mathematically founded description about gas dynamics. The famous Navier-Stokes governing equations of fluid dynamics were born in 1800, however this is also the most difficult model to solve.

The desire for flight was always the main driving force behind the development of the engineering field of aerodynamics. In the early 1800’s, engineers and scientists studied the aerodynamic forces of flight. Terms like “drag”, “lift”, and “thrust” were born and the relationships between them were determined. In 1871, the first wind tunnel was built. Drag theories by engineers like Kirchhoff and Rayleigh were established. Otto Lilienthal was the first person to become successful with glider flights, and after all this research work, the Wright brothers flew for the first time with an engine powered airplane in 1903.