The viscosity is an intensive property of a fluid that measures its internal resistance to motion or deformation. It plays an important role in areas such as aerodynamics and reservoir engineering since it determines the nature of the flow of a given fluid, such as air, water or oil.

A tangible everyday example of the comparison between two fluids’ viscosities is the one between honey and milk. Intuitively, honey is more viscous than milk. This can be seen in an experiment such as the one in the picture below, where the viscous fluid (right) is more difficult to flow than the less viscous fluid (left).

History

The most basic ideas of the mathematics of fluid mechanics — including its structure and formulations — emerged between the late seventeenth century and the first half of the eighteenth century. More advanced and involved concepts such as turbulence, discontinuities, and viscosity were introduced in the nineteenth and twentieth centuries.

The field of fluid dynamics started being scientifically defined with Newton’s Principia Mathematica in 1687, analyzing for the first time the dynamics of fluids. Newton treated fluids such as air as a particle agglomerate. It was only with Leonhard Euler that the differential and continuum form of fluid dynamics was developed\(^1\).

It was before Newton, however, that many important questions began to appear. Christiaan Huygens was interested in studying the effects of bodies inside fluids since he was a student of ballistics and therefore studied how air resistance worked. The problem of determining the dynamics of a body in relative motion — with a fluid surrounding it — is represented through the problem of resistance and was in many aspects intrinsically related to the study of viscosity.

Introduction

The mathematical models of fluid dynamics are mainly based on mass conservation, momentum balance, and energy conservation, together with the constitutive relations of the fluid. When coupled, the above conservation principles can form the Navier-Stokes equation, which is used to describe the motion of many viscous fluids.

where \(\rho\) is the mass density field as a function of space and time, and \(\vec{u}\) is the velocity field also as a function of space and time. This is known as the strong formulation of the mass conservation law, or the equation of continuity.

The momentum conservation can be written as\(^2\):

where \(\mu\) is the shear viscosity coefficient, \(\lambda\) is the second coefficient of viscosity, \(\vec{f}\) represents the body forces such as gravity \(\rho\cdot\vec{g}\), and \(\otimes\) is the outer product operator, so that \(\vec{u}\otimes\vec{u}=\vec{u}\times\vec{u}^T\).

These equations form the Navier-Stokes system. It’s common to approximate \(\lambda\) as \(\eta-\frac{2}{3}\mu\), where \(\eta\) is the bulk viscosity.

In general, when considering incompressible flow, where the fluid is not compressed or expanded rapidly, \(\eta\approx 0\) and \(\lambda\approx -\frac{2}{3}\mu\), which is called the Stokes hypothesis. In this case, \(\lambda\) is commonly neglected from the equation. Also, the bulk viscosity coefficient is hard to measure and to find values for in literature. The divergence of the velocity, \(\nabla\cdot\vec{u}\), is usually so small that the entire term which includes the bulk viscosity is commonly neglected. Consequently for incompressible or isochoric flow, assuming \(\rho=1\), the divergence of the velocity completely vanishes, and the Navier-Stokes system can be simplified to:

This system is known as the incompressible Navier-Stokes system.

As can be seen from the above equations, viscosity plays an important role in the determination of the dynamics of a fluid. Viscosity is a property of the fluid that determines the internal resistance of the fluid to motion. It can be qualitatively verified that a fluid with higher viscosity is more resistant to motion. Take oil, for example, which is more viscous than water.

From the incompressible Navier-Stokes equations, it follows that viscosity is the diffusion coefficient, associated with the Laplacian of the velocity.

Viscosity

There are several types of viscosity. The most commonly used in the field of fluid dynamics is the shear — or dynamic viscosity — represented here as \(\mu\). However, depending on the flow physics different viscosities play corresponding important roles. They are:

Kinematic Viscosity

When dealing with shock waves and phenomena that include high and rapid compression of the fluid, the bulk viscosity \(\eta\) can’t be neglected, being related to important concepts such as the sound attenuation. The kinematic viscosity \(\nu=\frac{\mu}{\rho}\) appears frequently in fluid mechanics and heat transfer and is related to flows under the force of gravity.

One common expression that uses kinematic viscosity is the Reynolds number, which relates the momentum to the viscous forces of a fluid.

Dynamic Viscosity

The shear or dynamic viscosity is commonly obtained with a velocity profile experiment. One of the most important examples of a velocity profile is the one in a boundary layer as is shown in the picture below, adapted from \(^1\), where the section of a body such as a wing is represented in a current flow:

The boundary layer is the region where viscosity effects are most significant in body-fluid interactions.

A famous velocity profile experiment involves two parallel and sufficiently large plates with a non-zero relative tangential velocity, zero normal velocity, and a fluid between the two plates. If for simplicity the experiment is made such that one plate is fixed while the other moves tangentially with a tangential velocity \(u=V\). A velocity profile would then appear in the fluid. The fluid in contact with the fixed plate would have zero velocity, while the fluid in contact with the moving plate would have the same velocity as it, namely \(V\). The picture below illustrates this experiment:

For a Newtonian fluid, where the rate of deformation is linearly proportional to the shear stress, the shear viscosity, in a 1D flow, can be expressed as follows\(^3\):

$$ \mu=\frac{\tau}{\frac{du}{dy}} \tag{5}$$

where \(\tau\) is the shear stress acting on the fluid layer in contact with the moving plate, and \(\frac{du}{dy}\) is the variation of the velocity in relation to the height.

In regions not close to solids, it is common to neglect viscous forces, since inertial and pressure forces dominate in those regions. These regions are called inviscid flow regions. When in inviscid regions, it is common to adopt the Euler system, which models the motion of an inviscid fluid as:

The Navier-Stokes equations above are derived considering a linear relationship between the shear stress and the velocity gradient in the momentum balance equation. The mathematics for non-Newtonian fluids can become extremely involved though. In such cases, the viscosity will be some function of the velocity. The field of rheology studies the flow of non-Newtonian fluids and many other models for viscosity\(^4\).

In the case of non-Newtonian flow, the ratio \(\frac{\tau}{\frac{du}{dy}}\) is called the apparent viscosity, and might not be constant. The relation of the shear stress with the rate of deformation classifies the type of fluid. For example, a fluid for which the apparent viscosity increases with the rate of deformation is called a dilatant fluid, while a fluid for which the apparent viscosity decreases with the rate of deformation is called a pseudoplastic fluid.

Viscosity SimScale

The SimScale public projects library provides a number of computational experiments that explore the nature of viscous flows.

Example 1

Beginning with the no-slip condition, the figure below shows the cross-section velocity profile inside a relatively long pipe. It can be noticed that the velocity on the boundary is zero.

A common non-Newtonian fluid is blood. SimScale also features projects simulating blood flow. The following project simulates the blood flow inside an artery bifurcation and compares three blood vessel cases: one healthy, one moderately blocked, and one severely blocked.

If there is one thing we love in Germany, it is beer. This is why we could not resist and simulated pouring ourselves one liter of beer in a Maßkrug. In the simulation below you can see the velocity of the beer which is why you’ll only see a layer moving up the Krug.

However, we can ensure you that there is one liter of beer in the glass.

References

Calero, J. S., “The Genesis of Fluid Mechanics, 1640-1780”, 2008

Feireisl, E., Karper, T. G., Pokorny, M., “Mathematical Theory of Compressible Viscous Fluids”, 2016

Çengel, Y. A., “Fluid Mechanics: Fundamentals and Applications”, 2014

Irgens, F., “Rheology and Non-Newtonian Fluids”, 2014

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.

Strictly Necessary Cookies

Strictly Necessary Cookie should be enabled at all times so that we can save your preferences for cookie settings.

If you disable this cookie, we will not be able to save your preferences. This means that every time you visit this website you will need to enable or disable cookies again.