Fill out the form to download

Required field
Required field
Not a valid email address
Required field

Documentation

Analysis Types

The SimScale Workbench is a single interface that supports a variety of different analysis types. A central concept of the Workbench is the organization of simulation setup parameters as per analysis type. This helps keep the simulation tree or the setup short and compact, by only exposing use-case-compatible settings of the solver in the interface.

As the first step in any new simulation setup, the analysis type that best fits the simulation case needs to be selected. A list of all the supported analysis types is listed in the figure below:

analysis type tree in simscale
Figure 1: List of all the available analysis types in SimScale. Click on the desired analysis type (shown above for Static) or click on ‘Need Help?’ to receive help choosing one.

The list is segregated based on flow and structural mechanics. Select the desired type and hit the ‘Create Simulation’ button. This leads to the SimScale Workbench.

Need Help?

If you need help selecting the appropriate analysis type for your model click on ‘Need Help?’ Answer a set of simple questions that will help you choose the most relevant analysis type.

In the following the currently supported analysis types and their basic use cases are described:

Fluid Dynamics (OpenFOAM®)

The following types can be used to simulate fluid flow and are based on the OpenFOAM® solver:

  • Incompressible: This analysis type is used to run CFD simulations in which fluid density variations are negligible. This assumption is typically valid when velocities and temperature gradients are small.
  • Compressible: This analysis type is used to run CFD simulations where density variations have a significant influence on the system. This commonly occurs when the flow velocities exceed ~30% of the speed of sound.
  • Convective Heat Transfer: This analysis type is used when temperature changes in the fluid lead to density variations and movement of the fluid due to gravity. This solver is commonly used for natural convection but can also be used for forced convection when flow motion is induced by external forces. Radiative heat transfer can also be modeled.
  • Conjugate Heat Transfer: Also referred to as CHT, this analysis type is used to simulate heat transfer within and between solid and fluid domains by exchanging thermal energy at the interfaces between them. Only compressible flows can be modeled. Electronic enclosures and heat exchangers are some of the common applications for CHT simulation.
  • Multiphase: This analysis type is used to simulate the time-dependent behavior of two-fluid mixture, for example, air and water. The analysis is carried out using the VoF (Volume of Fluid) method.

Note

As an extension to Conjugate Heat Transfer SimScale recently released an upgraded version Conjugate Heat Transfer v2.0, which is more stable and provides faster convergence as the energy equation is strongly coupled between the solid and fluid regions.
Both incompressible and compressible flows can be modeled, but with a reduced feature set.

Fluid Dynamics (LBM solver)

  • Incompressible (LBM) (Professional Feature): This analysis type is used to simulate the transient effects of external flow around objects using the Lattice Boltzmann method (LBM). It assumes that fluid density variations are negligible, which is typically valid when velocities and temperature gradients are small. It is capable of simulating large transient flow simulations.
  • Pedestrian Wind Comfort (Professional Feature): This analysis type is used to simulate transient wind analysis over large regions (cities, parks, etc.) with up to 36 wind directions. It is useful to compute wind comfort and safety of the pedestrians in accordance with the wind engineering standards.
    The analysis type uses LBM and, therefore, assumes that fluid density variations are negligible, which is typically valid when velocities and temperature gradients are small.

Note

The above analysis types are available only to our users with the Professional Plan.

Solid Mechanics (Code_Aster)

The following types can be used to simulate fluid flow and are based on the code aster solver:

  • Static: This analysis type is used to determine the displacements and stresses in structures or components caused by the applied constraints and steady loads while ignoring inertia and damping effects. Static analysis can be either linear or nonlinear.
  • Dynamic: This analysis type enables the time-dependent calculation of displacements and stresses in one or more solid bodies. If the rate of application of the load is important, then a dynamic analysis should be used, otherwise, a static analysis might be sufficient.
  • Heat Transfer: This analysis type is used to determine the temperature distribution and heat flux in a solid body. Both linear and non-linear material behaviors are supported.
  • Thermomechanical: This analysis type is used to determine the structural and thermal stress in a solid body subjected to thermal and structural loads.
  • Frequency Analysis: This analysis type is used to calculate the natural frequencies of constrained or free parts and assemblies. Besides the numerical value of the eigenfrequencies, the results provide insights into the deformation behavior of the corresponding eigenmodes.
  • Harmonic: This analysis type is used to determine the response of a structure under steady-state periodic (sinusoidal) loading at a given range of frequencies including the effects of material damping.

Last updated: October 11th, 2020

What's Next

part of: Simulation Setup

Contents
Data Privacy