Fill out the form to download

Required field
Required field
Not a valid email address
Required field
Required field

Fill out the form to download

Required field
Required field
Required field
Required field
Required field
Required field
Required field
Required field

Thank you. We will contact you shortly.

Structural Mechanics Engineering Simulation

Structural and Mechanics Engineering Simulation

SimScale is a cloud-native simulation software that enables engineers to test, validate, and optimize designs through Finite Element Analysis (FEA) via a standard web browser. The FEA software or structural analysis software component of SimScale enables designers and engineers to digitally test and predict the behavior of structures and mechanical components and solve complex engineering problems subjected to static and dynamic loading conditions. Our online simulation platform uses scalable numerical methods that can calculate mathematical expressions otherwise very challenging due to complex loading, geometries, or material properties. SimScales’ industry-leading and powerful solvers provide robust CAD interoperability meaning that more time is spent on design analysis through simulation rather than on CAD cleanup. Simulation provides detailed insights into performance, allowing engineers to identify design strengths and weaknesses in a virtual prototype, avoiding costly re-engineering later in the design stage. Furthermore, the resultant time & cost savings from simulating early and often allows engineers to explore more of their ideas, using the parametric capabilities in SimScale and integrations with third-party CAD and analysis packages.

Static load analysis of an electric motor shaft using FEA illustrating Von Mises stresses to evaluate material and component durability.

Static Analysis

The Finite Element Analysis (FEA) software component of SimScale enables engineers to perform simulations on structures and components, including linear static and nonlinear quasi-static analyses. In a linear case with applied static loads, the structural response can be determined in a single step. All types of nonlinearities can also be taken into account, including geometric, contact, and material nonlinearity.

FEA simulation of a plastic push-pin used commonly in the automotive industry

Dynamic Analysis

SimScale allows engineers to analyze the dynamic response of structure and components subjected to time-dependent loads and displacements, also called dynamic analysis. Initial conditions within the dynamic analysis feature, support the analysis of impact loads and resulting structural degradation. Time-dependent calculation of displacements, as well as stresses and strains in one or multiple solid bodies, is possible and in contrast to static analysis, inertial effects can be accounted for. In the post-processor, it is possible to analyze single-time steps as well as the dynamic performance over time. Similar to static analysis, engineers can evaluate deformations, or critical stresses and modify designs based on these insights.

Simulation showing vibration of an electric motor

Modal (Frequency) & Vibration Analysis

The Frequency Analysis simulation type allows engineers to calculate natural (under no external load excitation) frequencies of oscillation of a structure and its corresponding mode shapes. The resulting frequencies and deformation modes are dependent on the geometry and material properties of the structure, with or without displacement constraints. In SimScale, Code_Aster is used to perform the frequency analysis. The results from a frequency analysis enable users to evaluate the overall rigidity of a structure. The lower frequencies of oscillation can be used as inputs for seismic or wind load assessments for larger structures. Also, in parts and structures subjected to variable frequency loads, the fundamental frequencies are used to avoid resonance between the natural oscillation modes and the applied load. Frequency or modal analysis can help determine the eigenfrequencies (eigenvalues) and eigenmodes (mode shapes) of a structure due to vibration. The results are important parameters to understand and model structures that are subject to dynamic loading conditions. Additionally, a harmonic analysis can show the peak response of a system under a load in a given range of frequencies applied in buildings, bridges, rotors, spring mounts, or engines.

FEA simulation of an industrial globe valve

Thermomechanical Analysis

Thermomechanical analysis is loosely coupled but integrated thermal and mechanical features that allow engineers to investigate the structural and thermal behavior of a model by accounting for the thermal influences on the structural load state on a body. Again, Code_Aster is used for this type of analysis of one or multiple bodies at once. The thermal and structural fields are solved sequentially, in an iterative process, where the results of each thermal step serve as inputs for the corresponding structural step. The stress state of the structure depends on the structural constraints and loads, as well as on the thermal expansion under thermal loads, therefore offering an accurate reflection of the physics in the system.

simscale stuctural datasheet thumbnail

Datasheet:

Structural and Thermal Simulation

Download our datasheet and learn how engineers designing and testing mechanical components and devices can leverage powerful features in SimScale to solve realistic structural mechanics problems dealing with static, dynamic, and thermal loading conditions.

Features and Benefits 

Cloud-native Parameterization: Enables multiple design CAD geometries simulated in parallel with robust CAD handling and automatic meshing. 
 

Solver Speed & Accuracy: SimScale meets and in many cases exceeds the accuracy of traditional CAE simulation tools (speed does not compromise accuracy). 

Ease-of-use: SimScale takes away the complexity of preparing imported geometry and allows designers to focus on analysis by providing an intuitive, automated, and robust UI that reduces person-hours required for simulation, and also makes it accessible to non-experts/designers.

API Integration & Automation: The SimScale API facilitates bi-directional coupling with many popular CAE and design optimization tools such as Onshape®, Sketchup®, and more, allowing customization and app development engineering teams or third-party developers. The API is accessible using a Python or C SDK.

common file formats and CAD tools which integrate and import into SimScale

CAD Interoperability

SimScale can import various file formats making it easy for engineers to work with their preferred CAD tools including; Onshape, AutoCAD®, and Sketchup as well as importing common file formats such as STL, DWG, IGES, and more. CAD mode is a dedicated environment to interact with your CAD model, delete, extrude, or scale CAD parts, and perform CAD-related operations directly within the platform.

CAD file associativity: Associativity between varying CAD files is applied automatically in SimScale, maintaining naming conventions for parts/faces from the original CAD model. This means that when swapping CAD files for comparative studies, users don’t have to reassign boundary conditions, mesh settings, or result control outputs, making

Engineers can now perform CAD cleanup, preparation and fluid extraction directly in SimScale

CAD Editing

Known as CAD mode in SimScale equips users with a set of CAD simplification tools and reduces back-and-forth between SimScale and CAD software comparing two or more CAD variants of a single product much faster.

How can SimScale solve your greatest design challenge?

Request a Demo
anybotics logo

Multiphysics Analysis of an Autonomous Robot

“Autonomous robotics require demanding engineering simulation that can account for a broad range of physical phenomena. ANYmal robots work in both natural and industrial sites, whilst being exposed to challenging atmospheres including greasy, dusty, or even explosive environments. These must be accounted for when designing any of its hardware components. With SimScale we found our ideal balance between ease of use, variety of analysis types, and the ability to handle complex physics. We ultimately realized that SimScale’s customer service was the most welcome benefit of all. Their expert involvement allowed even the most inexperienced engineers to run reliable simulation studies.”

Dr. Alessandro Scafato, Senior Development Engineer at ANYbotics

Schübeler Technologies

Optimizing Fan Blades for Structural Performance

“The main advantage to use SimScale for us is to have a fast and simple way to get FEM calculation results. We don’t really need experience with Code_Aster but still get really quick and reliable results. Also, the subscription price is reasonable.”

Sandro Pinent, Managing Partner at Schübeler Technologies

Quantex logo

Increasing Manufacturer’s Tolerance with Simulation

“At Quantex, the SimScale platform gives us access to powerful tools, in an economic package. The support is outstanding and helps add the most value to our engineering capabilities. Knowing that the manufacturing defects would generally never exceed the tested maximum thickness, the production tolerance limits were increased by 50%.”

Jonathan Ford, Engineer at Quantex

Simulation Physics & Features

Static Simulation

Static simulation allows time-invariant calculation of displacements, stresses, and strains in one or multiple 3D solid bodies.

Dynamic Simulation

Dynamic simulation allows the time-dependent calculation of displacements as well as stresses and strains in one or multiple 3D solid bodies. In contrast to static analysis, inertia effects are taken into account. Additionally, the time steps performed represent real-time.

Thermo-Mechanical Simulation

The thermomechanical analysis type uses Code_Aster to calculate the structural and thermal behavior of one or multiple bodies at once. The thermal and structural result fields are calculated sequentially, in an iterative process, where the results of a thermal step serve as input for the next structural step. The stress state of the structure depends on the structural constraints and loads, as well as on the thermal expansion under thermal loads.

Frequency (Modal Analysis) Simulation

The Frequency Analysis simulation type allows the computation of natural (under no external load excitation) frequencies of oscillation of a structure and the corresponding oscillation mode shapes. The resulting frequencies and deformation modes are dependent on the geometry and material distribution of the structure, with or without displacement constraints. In SimScale, the Code Aster solver is used to perform the frequency analysis. The results from a frequency analysis enable you to evaluate the overall rigidity of your structure, as well as the rigidity of local regions. The lower frequencies of oscillation can be used as input for the seismic or wind load assessment and computation of structures. Also, in parts and structures subjected to variable frequency loads, the fundamental frequencies are used to avoid resonance between the natural oscillation modes and the applied load.

Harmonic Simulation

The harmonic analysis type enables the user to simulate the steady-state structural response of solids applied with periodical (sinusoidal) loads. This is similar to a transient dynamic analysis where inertia effects are taken into account, but compared to transient analysis, the results are not time-dependent but frequency-dependent. Thus, making it possible to compute the response of a structure subjected to vibrating forces or displacements over a frequency spectrum.

Structural vibration analysis on an electronic PCB

Nonlinear Analysis

SimScale users benefit from recreating non-linear effects in their simulations. Both geometric (structural) and material nonlinearities can be modeled. Engineers can simulate products, components, or structures where the geometry responds in a non-linear way to applied loads as well as material properties that can mimic elasticity and plasticity. For example, a material model describes an elastic behavior until the onset of plasticity after which the solid material undergoes irreversible deformation when subjected to loading. Similarly, hyper-elastic materials reflect nonlinear responses. Drop-tests are common using this analysis type to evaluate maximum stresses and deformation.

Structural vibration analysis on an electronic PCB

Vibration Analysis

Many industrial and electrical devices and components require vibration testing to conform to performance, safety, and compliance standards. A common application of vibration analysis is to recreate a digital twin of physical shaker table testing for example, where products would be tested on a physical apparatus. Simulation offers significantly more insight into product evaluation and can inform optimization studies at the design stage before moving on to costly prototyping.

Structural and thermal simulation of a turbo manifold

Bolt Preload

Handled as a boundary condition, an axial force is applied on one or more cylindrical bodies, and then the resulting length of the cylinder is fixed, all before the other load boundary conditions are applied to the model. This technique is useful to model the loads and interactions related to the tightening of bolted connections. Available for all structural analysis subtypes, it can be used to predict peak stresses and thermal performance, quantify plastic strain and ensure effective contact at bolted flanges.

Automated simulation workflows make structural simulation accessible

Templated Workflows

Build and manage custom templated workflows using the collaboration features in SimScale projects that come as standard. Expert users can configure a simulation project for a particular type of analysis including one-time setup for the boundary conditions, simulation parameters, mesh settings, and even specific result controls. Additional users can then use this template again and again, without needing expert CFD knowledge or the need to edit advanced settings. This style of working allows multiple scenario analyses using CAD-associated design and geometry changes, all simulated in parallel by CAD specialists and non-expert CFD users that are part of a larger engineering team. This feature enables engineering managers and team leads to maintain the quality and fidelity of the simulation input and output with administrative privileges and access to all projects.

A plastic push-pin simulated for deformation using FEA. This pin is a common part in the automotive industry

Easily Model Snap-Fits

The displacement initialization is useful for translating the initial position of certain parts for the simulation. In the plastic push-pin image below, for example, an initial CAD model for a snap-fit analysis has both parts connected. By applying a displacement initial condition to one of the parts, we can disconnect both parts without changing the CAD model enabling fast and accurate snap-fit evaluation.

Structural vibration analysis of a power module

Shaker Table Testing

Digitally perform shaker table testing according to required standards by virtually replicating a vibration test performed on physical test benches. A good example is a harmonic simulation needed to understand and improve battery product design to help meet international vibration test standards relating to the transport of dangerous goods. Before lithium cells/batteries can be transported, for example, they must have successfully passed certain physical tests. These tests simulate transport conditions like pressure, temperature, crush, and impact for long-distance transportation. Shaker table testing can assist in calculating maximum stresses, deflection magnitudes, and resonant behavior.

Validation Cases

Request a Demo

FAQs

SimScale use finite element analysis (FEA) as the numerical method and an implementation of the Code_Aster solver is integrated into SimScale.

Code_Aster is an acclaimed third-party solver that has been tightly integrated into SimScale for structural analysis. It has been used extensively in industry and academia and is well validated and peer-reviewed.

Yes, you can simulate the non-linear behavior of your CAD geometry and non-linear material properties.

You can see various types of stress (Cauchy, von Mises), forces, pressure and temperature on bodies, faces and joints.

You cannot import material libraries but can copy and edit existing materials to suit your needs that are then added to the SimScale materials library.

Yes, you can convert your engineering stress-strain data into the format SimScale requires and upload using a CSV file.

No. This is a feature that is currently in development.

You can use the SimScale application programming interface (API) to connect to third-party CAD or other analysis software. An example might be to use a CAD tool for parametric geometric modeling while using SimScale for the simulation.

Yes, you can download your results at any time in multiple formats that open in common third party tools.

You can find template projects for structural/thermal simulations in the projects library.

Yes, you can manually refine the mesh as needed.

Finite Element Analysis (FEA) is the simulation of any given physical phenomenon using the numerical technique called Finite Element Method (FEM). The results of a simulation-based on the FEA method are usually depicted via a color scale that shows, for example, the pressure distribution over the object.

 Yes! SimScale has several analysis types that engineers can use to perform structural analysis including: Static, Dynamic and Modal (vibration).

Structural mechanics, also referred to as solid mechanics, is a field of applied mechanics where stresses, strains and deformations are calculated in solid materials. This helps engineers understand the strength of a material, or structure to ensure fit for purpose & that adequate safety factors are in place.

Yes! Structural analysis is the same as structural mechanics?