Website Banner simulation features

Discover SimScale's Simulation Features

Structural Mechanics

A comprehensive set of analysis capabilities for investigating Structural Mechanics

Linear static behavior

Use the linear static analysis for investigating the structural response of your design to static loads. This type of simulation is very computationally efficient and helps to identify optimization potential early in the design process.

Modal / frequency analysis

Determine the eigenfrequencies and the associated modal displacements of structures to ensure their reliable function under external influences like vibrations.

Nonlinear and dynamic simulations

When designing high performance components, simulating true material behavior or modeling contacts, nonlinear analysis is necessary. Dynamic analysis allows for the time-dependent calculation of displacements, stresses, and strains in one or more solid bodies subjected to loading. Inertial effects are taken into account and the simulation proceeds in real time steps.

Parts and assemblies

All Structural Mechanics solvers of the SimScale simulation platform natively support single parts or complete CAD assemblies. You can assign different contact constraints between the single parts of the assemblies such as sliding, rotational, or bonded contact in order to describe the kinematics of your assembly.


Download cost and time investment fact sheet Download

Fluid Dynamics / CFD

The SimScale platform gives access to sophisticated Fluid Dynamics simulation capabilities.

Laminar and turbulent modeling

Depending on the Reynolds number of the fluid flow, laminar or turbulent models can be implemented. The platform supports multiple turbulence models which enables you to choose how sophisticated you want your analysis setup to be.

Steady-state and transient solvers

The fluid dynamics solvers support both steady-state and transient setups. Investigate the steady-state of your application or set up transient simulations for time-dependent processes.

Mass transport within fluid flows

We are constantly enhancing the capabilities for simulating fluid mechanical processes. One of the latest additions is the possibility to simulate mass transport in a fluid flow. This example shows the transport of oxygen in water flowing through a T-junction.

Incompressible and compressible fluids

The platform provides access to multiple incompressible solvers for modeling low-speed, low-temperature fluid flows. Along with these, there are several compressible solvers. As an example you can see the compressible air flow around an airfoil at Mach 0.7.

Single- and multiphase flows

Simulate fluid systems with one or more phases. The Volume of Fluid (VOM) method enables the efficient modeling of free surface flows as they often appear in marine or process engineering applications.

Advanced modeling concepts

Several advanced modeling concepts such as porous media or rigid body movement of fluid domains allow the modeling of more complex applications.

Download cost and time investment fact sheet Download


Predict the behavior of your application under the influence of thermal effects.

Thermostructural behavior

The structural response to thermal loads is an important design criterion for many industrial applications. The SimScale platform provides you with the capabilities for investigating these effects early and efficiently.

Heat transfer in fluids

Fluid flow heat transfer analysis gives you the possibility to study the transport of temperature in fluids. Some application examples for this analysis involve room ventilation studies and analysis of flow within heat exchangers.

Download cost and time investment fact sheet Download

Other Analysis Types

Simulate solid bulk material or investigate the acoustic phenomena of your designs.

Particle Analysis

A discrete element method solver allows the virtual simulation of the behavior of bulk material within industrial applications. The image shows the simulation of solid particles within an industrial mixing mill.


The Finite Element based solver allows you to make a natural frequency analysis of complex geometries. The resulting eigenmodes and eigenfrequencies give you further insights into the acoustic behavior of a design.

CAD Preparation and Meshing

The platform supports a complete simulation workflow starting with uploading your CAD models.

CAD model upload

Start the setup of your numerical analysis with uploading a CAD file from your application. The CAD model is displayed instantly in 3D and you can interact with it just as you do with your local desktop software. Currently, the platform supports the formats STEP, IGES and BREP as well as the triangulated format STL.

CAD model preparation

The platform provides a growing set of CAD model preparation operations. For example, feature recognition for STL files enables you to create application specific meshes like boundary layer creation even if the STL file only provides surface information.

Automated mesh creation

Highly automated meshing operations allow you to set up a numerical analysis quickly and efficiently. The automated meshing approach analyzes the CAD model serving as a basis for the meshing operation and adapts the algorithm accordingly. The resulting mesh is suitable for your first simulations of an application.

Tetrahedral meshing

Tetrahedral meshing operations enable you to create meshes for complex designs easily and reliably. The additional capability of inflating prismatic boundary layers makes this mesh creation approach valuable for fluid dynamics simulations.

Hex-dominant meshing

The hex-dominant algorithm for mesh creation makes it possible to generate very efficient meshes for Computational Fluid Dynamics simulations. In general, when compared to a tetrahedral mesh, a hex-dominant mesh of the same geometry has a smaller cell count but nevertheless preserves the simulation's accuracy.

Visualization and post-processing

Either analyze the results online within the SimScale post-processing environment or download them.

Online Visualization

As soon as a simulation is completed, the SimScale post-processing environment gives you direct access to the results. Apply filters to further analyze the result data and back your design decisions. The current post-processor is powered by ParaViewWeb.

Result download

You are free to download all computed results and further analyze or visualize them locally. The open workflow of the platform enables you to use the capabilities you need and therefore extend your desktop tools.

Accessibility and Collaboration

SimScale transforms Computer-Aided Engineering from a desktop application into an open online platform


No specialized local hardware, software or licenses are needed. A standard web browser and broadband internet connection are sufficient for efficiently and flexibly setting up numerical simulations in SimScale Public Projects.

Project management

Being an online platform, SimScale can offer you new ways of managing your simulation projects. Share results or simulation setups with colleagues, clients or the SimScale support team. Use the public link tool to enable others to import one of your projects for review.

Project library

Setting up a complete numerical analysis from scratch can be time-consuming. The platform's integrated project library enables you to browse and search a variety of publicly available simulation projects for various diverse applications. Just import them, adapt them to your needs and run your own analysis based on them.

Community features

The SimScale user base is constantly growing. The platform enables everyone to profit from each other's know-how. Sharing information, simulation setups or results is straightforward. The SimScale platform aims at transforming Computer-aided Engineering from a desktop software to an online platform where users can collaborate with and learn from each other.

High-Performance Computing

You have access to unlimited computing capacity whenever you need it.

Choose hardware on-demand

Once your simulation setup is complete, you may choose on what kind of hardware you want it to be computed. Decide whether you want to use a standard workstation, hundreds of them in parallel or a large cluster. Your job will be automatically transferred to large computation centers where you only pay for what you actually use.

Parallel Computing

Since the platform provides access to unlimited computing capacity, there is no need to wait anymore and run your simulations sequentially. Start multiple machines in parallel for running parameter studies where you compare different design versions or choose more cores and memory to run more sophisticated simulations. The scalable infrastructure of the SimScale backend provides scalability and at the same time flexibility.

Development and Updates

Profit from a constant and seamless feature integration into the platform.

Seamless feature integration

The SimScale team and its partners are constantly working on enhancing and improving the capabilities of the platform. Therefore, new feature are released monthly. You profit directly from the new functionality without having to update. Do you have a specific analysis or application in mind? Let us know!

A generic CAE frontend

The SimScale platform is designed for the general setup of numerical analyses so that it serves as a generic frontend for all kinds of CAE functionalities. This allows the integration of different meshers, solvers and other codes on the backend. For example, in the first release version, the finite element based simulations are carried out with CalculiX while the finite volume based solving is done with OPENFOAM®. All available codes are described in the documentation on the platform.

This offering is not approved or endorsed by OpenCFD Limited, producer and distributor of the OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks.