Hollow cylinder in plain strain condition


The aim of this test case is to validate the following functions:

  • distributed pressure
  • symmmetry BC
  • nodal displacements
  • strains and nodal stresses

The simulation results of SimScale were compared to the analytical results in [SSLV04_A] and the numerical results in [SSLV04]. The meshes used in (A) and (B) were created with the parametrized-tetrahedralization-tool on the SimScale platform and the meshes used in (C) and (D) were meshed with Salome, resulting in four different modelizations.

Import validation project into workspace



Geometry of the hollow cylinder

  A B E F A’ B’ E’ F’
x [m] 0.1 0.2 2/2 2 0.1 0.2 2/2 2
y [m] 0 0 2/2 2 0 0 2/2 2
z [m] 0 0 0 0 0.01 0.01 0.01 0.01

Analysis type and Domain

Tool Type : Code_Aster

Analysis Type : Static (linear elastic)

Mesh and Element types :

Case Mesh type Number of nodes Element type
(A) linear tetrahedral 1542 3D isoparametric
(B) quadratic tetrahedral 9623 3D isoparametric
(C) linear hexahedral 768 3D isoparametric
(D) quadratic hexahedral 2720 3D isoparametric

Mesh used for the SimScale case (A)


Mesh used for the SimScale case (C)

Simulation Setup


  • isotropic: E = 200 GPa, \(\nu\) = 0.3


  • Face EFE’F’ zero normal-displacement
  • Face ABA’B’ zero y-displacement
  • Face ABEF and face A’B’E’F’ zero z-displacements fixed


  • Pressure of 60 MPa on Face AEA’E’


Comparison of the displacements and stresse at point A obtained with SimScale with the results presented in [SSLV04]. The Error was calculated with respect to [SSLV04_A].

Comparison of the results at point A
Case Quantity [SSLV04_A] [SSLV04] SimScale Error (%)
(A) \(d_X\) [m] 5.90E-005 5.89E-005 5.72E-005 -3.10
(B) \(d_X\) [m] 5.90E-005 5.90E-005 5.72E-005 -3.05
(C) \(d_X\) [m] 5.90E-005 5.90E-005 5.71E-005 -3.14
(D) \(d_X\) [m] 5.90E-005 5.89E-005 5.72E-005 -3.05
(A) \(\sigma_{XX}\) [Mpa] -6.00E+001 -5.72E+001 -5.61E+001 -6.45
(B) \(\sigma_{XX}\) [Mpa] -6.00E+001 -6.04E+001 -6.00E+001 -0.02
(C) \(\sigma_{XX}\) [Mpa] -6.00E+001 -5.92E+001 -5.12E+001 -14.63
(D) \(\sigma_{XX}\) [Mpa] -6.00E+001 -5.94E+001 -5.99E+001 -0.19
(A) \(\sigma_{YY}\) [Mpa] 1.00E+002 9.79E+001 1.02E+002 1.51
(B) \(\sigma_{YY}\) [Mpa] 1.00E+002 9.92E+001 1.00E+002 0.00
(C) \(\sigma_{YY}\) [Mpa] 1.00E+002 1.00E+002 1.03E+002 3.49
(D) \(\sigma_{YY}\) [Mpa] 1.00E+002 9.96E+001 9.99E+001 -0.06
(A) \(\epsilon_{XX}\) -4.50E-004 -4.33E-004 -4.53E-004 0.71
(B) \(\epsilon_{XX}\) -4.50E-004 -4.49E-004 -4.68E-004 3.98
(C) \(\epsilon_{XX}\) -4.50E-004 -4.47E-004 -4.35E-004 -3.36
(D) \(\epsilon_{XX}\) -4.50E-004 -4.47E-004 -4.67E-004 3.86
(A) \(\epsilon_{YY}\) 5.90E-004 5.75E-004 5.71E-004 -3.14
(B) \(\epsilon_{YY}\) 5.90E-004 5.88E-004 5.72E-004 -3.05
(C) \(\epsilon_{YY}\) 5.90E-004 5.90E-004 5.71E-004 -3.26
(D) \(\epsilon_{YY}\) 5.90E-004 5.87E-004 5.72E-004 -3.13


[SSLV04_A](1, 2, 3) Analytical Solution from [SSLV04]
[SSLV04](1, 2, 3, 4) SSLV04 - Cylindre creux en contraintes planes