THE CHALLENGE
OPTIMIZING FLUE GAS HEAT RECOVERY
ATAG specializes in designing high-end boilers. At the heart of every ATAG boiler is our revolutionary iCon heat exchanger, which has unrivaled performance and efficiency levels. It’s made from high-grade stainless steel (as it has a longer lifespan than aluminum) and, uniquely, it maintains its original efficiency levels throughout its lifetime.
In order to maintain this, ATAG uses flue gas heat recovery. Normally small boilers are on-demand heating, so they use flue gasses to preheat water coming in, which in turn can improve efficiencies from 83% up to 98% when in use for things such as taking a shower.
During a cost-saving project for their I-series boiler system, ATAG noticed a shift in acoustic performance after extensive acoustic testing. The changes had shifted the resonance frequency of the exhaust to match the natural frequency of the boiler. As such, the system was experiencing more vibration and generating more noise than it had before. To improve the acoustic performance without project delay, the problem needed to be resolved as soon as possible.
In order to eliminate the noise, they needed to dampen the harmonic. This was done by tackling the design of the exhaust piping. While previous work of this genre was done via prototyping, this workflow was deemed too slow for such a time-sensitive matter. Which could have resulted in the cancellation of the cost-saving project.