Blog

Why OpenFOAM® Users Should Try SimScale

fluid flow analysis OpenFOAM

OpenFOAM is gaining growing popularity in the engineering simulation world. As an open source solver, it can be used for the majority of classical simulation problems. But OpenFOAM is not the most user-friendly software, as we all know.

This is the reason why SimScale decided to integrate it into its online simulation software. With an easy-to-use interface for different solvers including OpenFOAM, Code_Aster, YADE, SU2 and more, SimScale developed further, becoming an open ecosystem where simulation functionality, content, as well as people, are brought together in one place. SimScale is not open source, but through the Community account, engineers and designers can join free of charge and collaborate with their peers.

Challenges in classical simulation methods

Current simulation challenges are related to the integration and automation of simulation tools in a very complex CAE environment, including automatic geometry retrieval, surface and volume meshing, sensitivity and optimisation studies. In terms of the solver settings and user expertise, Computational Fluid Dynamics (CFD) is considerably behind Finite Element Analysis, making the problems of software development and usability more pressing.

Range and quality of physical models, solver settings, and solution algorithms, as well as the lack of robust automatic solution control, brings considerable complexity to the user. The current state of solver development aims to produce monolithic general purpose tools, trying to tackle all physical problems for all users. These are few consequences which can arise [1]:

  • Simulation software becomes exceedingly complex due to the interaction between numerous physical models, solution strategies, and solver settings. This leads to development bottlenecks and difficulties in testing and validation;
  • User requirements may involve experimental material properties, additional equations in the system or coupling with multiple external packages into simulation networks;
  • Monolithic software necessarily implies that for any set of physics only a small subset of functionality is being used. The impact of unused or incompatible model combinations remains, typically in unnecessary memory usage;
  • A drawback of monolithic tools is the tendency to use identical discretization and numerics even when they are clearly sub-optimal, simply because they “fit into the framework”.

What is OpenFOAM?

OpenFOAM is free software, offering to users the freedom to run, copy, distribute, study, change and improve the software. OpenFOAM was developed primarily by OpenCFD Ltd in 2004, distributed by OpenCFD Ltd and the OpenFOAM Foundation. It has a large user base across most areas of engineering and science, from both commercial and academic organisations. OpenFOAM has an extensive range of features to solve anything from complex fluid flows involving chemical reactions, turbulence, and heat transfer, to acoustics, solid mechanics, and electromagnetics.

OpenFOAM is first and foremost a C++ library, used primarily to create executables, known as applications. The applications fall into two categories: solvers, that are each designed to solve a specific problem in continuum mechanics; and utilities, that are designed to perform tasks that involve data manipulation. New solvers and utilities can be created by its users with some pre-requisite knowledge of the underlying method, physics, and programming techniques involved [2].

OpenFOAM is a collection of approximately 250 applications built upon a collection of over 100 software libraries (modules). Each application performs a specific task, e.g the snappyHexMesh application can generate meshes for complex geometries, such as a vehicle. The simpleFoam application could then be used to simulate steady-state, turbulent, incompressible flow around the vehicle.

OpenFOAM structure

Figure: Overview of OpenFOAM structure [2].

The main resource for OpenFOAM developers community is the OpenFOAM User Guide [2], which

  • Examines the setup of input data files for a CFD analysis. The input data includes time information (start time, end time, time step, etc) and controls for reading and writing data (time, format, compression, etc);
  • Describes the setting of numerical schemes that affects accuracy and stability of a simulation. Matrix solver controls and algorithm controls are also explained that affect computational time and stability;
  • Includes a chapter on meshing, beginning with the mesh structure of OpenFOAM and the handling of boundaries and boundary conditions;
  • Includes applications that convert meshes from well-known formats into the OpenFOAM format and detailed coverage is given to the principle conversion applications, e.g.fluentMeshToFoam;
  • OpenFOAM is shipped with a version of ParaView that enables visualisation of elements used commonly in CFD such as geometry surfaces, cutting planes, vector plots, and streamlines. Animations can be generated conveniently from ParaView.

CFD analysis covered by OpenFOAM

OpenFOAM is gaining considerable popularity in academic research and among industrial users, both as a research platform and a black-box CFD and structural analysis solver. Main ingredients of its design are:

  • Expressive and versatile syntax, allowing easy implementation of complex physical model;
  • Extensive capabilities, including wealth of physical modelling, accurate and robust discretisation, and complex geometry handling, to the level present in commercial CFD;
  • Open architecture and open source development, where complete source code is available to all users for customisation and extension at no cost.

OpenFOAM CAE SimScaleOpenFOAM does not have a generic solver applicable to all cases. Instead, OpenFOAM users must choose a specific solver for a class of problems to solve. The solvers with the OpenFOAM distribution are in the SOLVERS directory, reached quickly by typing app at the command line. This directory is further subdivided into several directories by category of continuum mechanics, e.g. incompressible flow, heat transfer, multiphase, lagrangian, combustion. Each solver is given a name that is descriptive.

The current list of solvers distributed with OpenFOAM is covering a wide spectrum of CFD analysis:

  • ‘Basic’ CFD codes
  • Incompressible flow
  • Compressible flow
  • Multiphase flow
  • Direct numerical simulation (DNS)
  • Combustion
  • Particle-tracking flows
  • Molecular dynamics methods
  • Direct simulation Monte Carlo methods
  • Electromagnetics

Why is SimScale important for OpenFOAM users?

ss034-openSimScale is based on cutting-edge open source solver technology currently used by leading companies in a large number of industries such as automotive (BMW, Ford, Volkswagen), aerospace, (Airbus), process technology (Siemens), or power generation (General Electric).

The key benefits offered by SimScale to OpenFOAM users or other open source CAE solvers are deeply related to the open source principles:

  • Quick integration – the SimScale platform can rapidly implement new technology and ensure the greatest compatibility between SimScale and third-party software tools, with high accuracy;
  • Easy scripts integration – full functionality of OpenFOAM CAE in a friendly interface. The facilities of integration and ease of use SimScale reduce the headaches of simulation technology users who are not the biggest fans of scripts.
  • Open exchange environment– SimScale creates an environment where people can learn and use open information toward creating new ideas;
  • Open participation– Using SimScale, engineers with different specialisations can share information about the products with designers within the product development teams, between divisions or with suppliers;
  • Open collaboration – SimScale promotes free collaboration which generates creation and open support for problem solving;
  • Open prototyping– can generate rapid failures, but can lead to better solutions found faster. For CAE and specifically OpenFOAM users this is one of the most important advantages in creating high-quality products and fast release on the market;
  • Open access to meritocracy – in open source communities the best ideas win and everyone has access to the same information. With the SimScale Public Projects, the benefit is the same, as every user with a Community account creates public simulations that other members can copy, change or improve according to their needs, everything while having the option to share or comment on projects.
  • Open community – People with the same principles bring together diverse ideas and share their work. In engineering simulation, the CAE community contribution could be essential to do more.

Here they are, 8 reasons why OpenFOAM users should give SimScale a try. With already 70 000 engineers and designers relying on SimScale for their simulation projects, the platform is so much more than an interface for different solvers. It is a powerful online simulation software with plenty of features to choose from and a CAE community where everyone can collaborate on and share their work with their peers.

You can try it by creating a free Community account or a 14-day trial for the Professional account. Either way, you’ll have a blast!


References:

[1] Jasak, H., Jemkov, A., Tukovic, Z. – “OpenFOAM: A C++ Library for Complex Physics Simulations”, International Workshop on Coupled Methods in Numerical Dynamics IUC, Dubrovnik, Croatia, September 2007.

[2] “OpenFOAM User Guide”, Version v4.0, The OpenFOAM Foundation, July 2016.

SimScale is the world's first cloud-based simulation platform, enabling you to perform CFD, FEA, or thermal analyses. Sign up for the 14-day free trial and join the community of 70 000 engineers and designers. No payment data required.