CAE & CAD Integration: The Spectacular Benefits of the Cloud

Valve Simulation - CAE with SimScale

Data volume explosion and new computing capabilities provided by cloud computing are making a big difference in computer-aided engineering (CAE) and computer-aided design (CAD). Starting with the Steam Engine and Industrial Revolution, each engineering innovation has played a historical role, having an essential driver to make products faster, better, and more efficiently.

From definitions to practice — CAD and CAE

Computer-aided design (CAD) is the use of computer systems to aid in the creation, modification, analysis, or optimization of a design [1]. But CAD should not be only considered for these activities. CAD is an integrated part of the whole Digital Product Development cycle, including Product Lifecycle Management (PLM) processes, together with other tools like: finite element analysis (FEA), computer-aided manufacturing (CAM), photo realistic rendering, and document management.

Computer-aided engineering / CAE with SimScale crankshaft

Computer-aided engineering (CAE) refers to the broad usage of computer software to aid in engineering analysis and may include: Finite Element Analysis (FEA), Computational Fluid Dynamics (CFD), Multibody Dynamics (MBD), and optimization. All these CAE tools are being used in the simulation, validation, and optimization of products and manufacturing tools with applicability in many industries such as: automotive, aerospace, and marine & shipbuilding. [2]

Two domains with many engineering specialities

By integrating product design in pre- and post-processing phases, CAE is becoming an effective driver for CAD applications. But in the majority of complex systems, CAD represents multi-layered modelling activities that may include a transfer function in an engineering domain, a heat source in another domain, and a rigid body in another. A simple change in the design is becoming a challenge with adjustments required in all derived “data models”.
Looking at virtual simulation in a specific engineering domain, the challenge is amplified by the translation of a design data model into a solver data model. Simulation accuracy depends on the description of the system to the solver. Due to complexity of the whole process: engineering – design – simulation – validation – redesign – simulation – final validation, each CAE and CAD activity is requesting different engineering specialities. If different teams didn’t have a good communication and collaboration experience the quality of the whole process could be compromised.   

Using a Centric Design

Considering the same digital model in all workflow processes, simulation can be involved in the early stages of design. In his “CAE-centric Design” article published in 2009 Paul Schreier [3] is showing how simulation-driven design can solve problems early in the product life cycle and how engineers can validate and change designs based on these simulations. CAE tools are now working with native CAD geometries, and it is no longer necessary to export a CAD geometry to a standard file format before importing that file into the CAE tools. Furthermore, integrated links between CAD and CAE systems allow automatic updates between both environments.

Benefits of CAE/CAD integration

Formula 1 car simulation with SimScale

One of the major benefits of integration is that it takes far less time to perform parametric analyses, a very common task where a designer changes the dimensions of a product feature to find the one that achieves optimal performance. In fact, many CAE systems have automated features that sweep through a range of parameters and highlight the results that come closest to the desired one. Another advantage is the ability to couple CAD and CAE by virtual prototyping, offering a fundamental change in the way engineers work, increasing productivity during the workflow.

Other benefits of traditional CAD and CAE integration are related to:
• Time and error reduction for the design of engineering ensembles and independent components;
• The possibility to make corrections early in the engineering conceptualization and design phases;
• Dramatic cost reduction associated with the physical testing of prototypes;
• Keeping the established deadlines in different phases of the engineering workflow;
• Radical improvement of product quality and enriching the customer satisfaction level;
• Increasing the competitive advantages associated with a quick time to market, best quality and customer retention.

Cloud migration benefits

Cloud software SimScale

By 百楽兎 [CC BY-SA 3.0 or GPL], via Wikimedia Commons

The large scale assimilation of cloud computing and the continuous improvement of human-machines interaction, automation, robotics, artificial intelligence, and additive technology, have transformed engineering simulation into a high-tech asset. For engineering simulation software offered as Software-as-a-Service subscriptions, this CAE/CAD integration asset value is becoming more and more preferred, as the user benefits are empowered by very specific cloud competitive advantages, including:

• Unlimited power processing, storage, backup and security
• Elastic resources allocation function of modelling and engineering complexity, extending workflow beyond the desktop
• Real time modelling in the cloud: form, function, fabrication and performances
• Improved collaboration by project access and sharing between multi-specialized engineering and designers teams without location, time or communication limits
• Better operational management of company resources, transforming IT costs into “utility like pay-per-use” model
• Relaxing financial balance by moving the whole model cost from capital expenses – CAPEX to operational expenses – OPEX
• Cloud security compliance of encrypted data transfer, processing, storage, and backup according to international standards and commercial SLA

A modern browser-based CAE platform

SimScale CAE platform

Viewed from this perspective and compared with traditional on-premise packages, the SimScale 3D simulation platform is recommended as one of the most powerful solutions based on a comprehensive set of simulation model analyses and cloud computing infrastructure.

SimScale has created a completely new approach to how engineering simulation can be used by making it accessible, cost-efficient and easy-to-learn and to use. Here are the most important differentiators:

  • Web-based environment, only needs Internet connection
  • Powerful end-to-end simulation solutions for structural mechanics, fluid dynamics, thermodynamics, acoustics, and discrete particle analyses.
    • Proprietary or pre-designed CAD models ready to be used
    • Fast, efficient, and flexible iterations
    • No supplementary hardware and software resources necessary
    • CAD models easy to upload and to simulate even by design engineers.

SimScale has also recently announced the launch of SimScale Connector App for Onshape, which allows you to quickly import your CAD models directly from Onshape into SimScale without the need of exporting and uploading any files. If you want to read more about it, here is the article with the announcement.

[1] Lalit Narayan, 2008 – “Computer Aided Design and Manufacturing”, New Delhi, Prentice Hall of India.
[2] B. Raphael, and I.F.C. Smith, 2003 – “Fundamentals of computer aided engineering”, John Wiley.
[3] Paul Schreier, 2009 – “Closing the CAD/CAE Gap”, Scientific Computing World, December 2009/January 2010.

SimScale is the world's first cloud-based simulation platform, enabling you to perform CFD, FEA, or thermal analyses. Sign up for the 14-day free trial and join the community of 70 000 engineers and designers. No payment data required.