The aim of this test case is to validate the following:
Heat transfer in electronics
Transient analysis
The simulation results of SimScale are compared with the results presented in [Bruce]. The mesh used was created using first order tetrahedral elements with local mesh refinement algorithm on the SimScale platform.
The current analysis is carried out on a high-power IC package that is attached between the heatsink base and the PCB substrate as shown in figure below. The components explicitly represented in the model are the die, TIM1, lid, TIM2 and the heat sink base (where TIM = Thermal Interface Material). To proceed with the simulation, only a portion of the geometry is considered with width and length of all components equal to that of the die.
Simulation ready CAD model
The simulation ready CAD model with its specific dimensions are as shown below.
A power of 1 W is applied to the top surface of the die which is in contact with the TIM. Therefore, the surface heat flux that is applied on the top surface of the die is calculated by dividing the power with respect to the die surface area.
Surface heat flux = 5917.1598W/m2 (top of the die)
Convective heat flux:
The cooling effect of the heatsink fins are collectively represented through a heat transfer coefficient that is directly applied to the heatsink base, top surface. Therefore, a convective heat flux boundary condition is used to represent the thermal resistance offered by the heatsink to the surrounding air.
Convective heat flux = 20000W/m2K (heat sink to air top surface)
Results
Temperature distribution
Most of the temperature rise occurs at the TIM surfaces. The temperature distribution of the IC package is as shown below.
Temperature-change-w.r.t-ambient-temperature
Comparison of the SimScale results with that of [Bruce] is as shown below.
Temperature change w.r.t ambient temperature versus time plot comparison with [Bruce] and SimScale simulation results for 3 different location of the model, Die-top, Lid-top and heatsink-bottom
A slight deviation in temperature graphs from [Bruce] with SimScale is due to the approximation error caused during the extraction of temperature values from the digital plots.
References
[Bruce]
(1, 2, 3, 4) Bruce Guenin, “Calculation Corner: Transient Thermal Modeling of a High-Power IC Package, Part 1” Calculation Corner, Computer, IT Products, Number 4, Software/Modeling, Volume 17, December 22, 2011
This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.
Strictly Necessary Cookies
Strictly Necessary Cookie should be enabled at all times so that we can save your preferences for cookie settings.
If you disable this cookie, we will not be able to save your preferences. This means that every time you visit this website you will need to enable or disable cookies again.