Documentation

Free vibrations on elastic support

Overview

The aim of this test case is to validate the following functions:

  • Elastic support

The simulation results of SimScale were compared to the analytical results derived from [SCHAUM]. The mesh used was created using first order tetrahedralization meshing algorithm on the SimScale platform.

Import validation project into workspace

Geometry

FreeVibrationsOnElasticSupport-geometry
Geometry of the square box mass

The square box mass has a length, width and height of 1m with upper face partitioned in to half.

Analysis type and Domain

Tool Type : Code_Aster

Analysis Type : Linear static and dynamic

Mesh and Element types :

Case Mesh type Number of nodes Number of 3D elements Element type Analysis type Elastic support type – face EIGJ Elastic support type – face IFJH Elastic support type – combined (face EFGH)
(A-1) linear tetrahedrals 21 26 3D isoparametric Static
isotropic total
(A-2) linear tetrahedrals 21 26 3D isoparametric Dynamic
isotropic total
(B-1) linear tetrahedrals 33 61 3D isoparametric Static isotropic total orthotropic total
(B-2) linear tetrahedrals 33 61 3D isoparametric Static isotropic distributed orthotropic distributed
(B-3) linear tetrahedrals 33 61 3D isoparametric Static isotropic total and distributed orthotropic total and distributed isotropic total
FreeVibrationsOnElasticSupport-mesh-caseA
Mesh used for the SimScale case A-1/A-2
FreeVibrationsOnElasticSupport-mesh-caseB
Mesh used for the SimScale case B-1/B-2/B-3

Simulation Setup

Material:

  • isotropic: E = 205 GPa, ν = 0.28, ρ = 10 kg/m3

Constraints:

Case A-1/A-2:

  • total isotropic spring stiffness of K = 9810 N/m on face EFGH

Case B-1:

  • total isotropic spring stiffness of K = 4905 N/m on face EIGJ
  • total orthotropic spring stiffness of Kx, Ky, Kz = 4905 N/m on face IFJH

Case B-2:

  • distributed isotropic spring stiffness of \(\frac {K}{A}\) = 9180 N/m³ on face EIGJ
  • distributed orthotropic spring stiffness of \(\frac {K_x} {A}\), \(\frac {K_y} {A}\), \(\frac {K_z} {A}\) = 9180 N/m³ on face IFJH

Case B-3:

  • total isotropic spring stiffness of K = 1962 N/m on face EIGJ
  • total orthotropic spring stiffness of \(\frac {K_x} {A}\), \(\frac {K_y} {A}\), \(\frac {K_z} {A}\) = 1962 N/m on face IFJH
  • distributed isotropic spring stiffness of \(\frac {K}{A}\) = 3924 N/m³ on face EIGJ
  • distributed orthotropic spring stiffness of \(\frac {K_x} {A}\), \(\frac {K_y} {A}\), \(\frac {K_z} {A}\) = 3924 N/m³ on face IFJH
  • total isotropic spring stiffness of K = 1962 N/m on face EFGH

Reference Solution

Case A-1/B-1/B-2/B-3:
(1)

$$x = \frac {mg}{k} = \frac {10.(9.81)}{9810} = 0.01 m$$

Case A-2:
(2)

$$x = \frac {v_o}{\omega} sin \omega t + x_o cos \omega t$$
where,

angular frequency, \(\omega\) = \(\sqrt \frac {k}{m}\) = \(\sqrt \frac {9810}{10}\) = 31.32 rad/s.

initial velocity, Vo = -0.01 m/s

position of initial release, Xo = -0.01 m

time, 2s <= t <= 4s

The equation (1)(2) used to solve the problem is derived in [SCHAUM].

Results

Comparison of the displacement dz computed on face ABCD from SimScale case A-1/B-1/B-2/B-3 with [SCHAUM] equation (1).

Comparison of the displacement [m]
Quantity [SCHAUM] Case A-1 Error Case B-1 Error Case B-2 Error Case B-3 Error
x 0.01 0.01 0 0.01 0 0.01 0 0.01 0
FreeVibrationsOnElasticSupport-result
Comparison of the oscillations computed on face ABCD for case A-2

Comparison of the oscillations dz computed on face ABCD from SimScale case A-2 with [SCHAUM] equation (2).

References

[SCHAUM] (12345) (2011)”McGraw-Hill Schaum’s outlines, Engineering Mechanics: Dynamics”, pg 271-273, N. W. Nelson, C. L. Best, W. J. McLean, Merle C. Potter
Contents

Cookie Policy

SimScale uses cookies to improve your user experience. By using this website you consent to our cookie policy. Don't worry, we are not storing any personal information.

Accept Data Privacy