Fill out the form to download

Required field
Required field
Not a valid email address
Required field
Required field
  • Set up your own cloud-native simulation in minutes.

  • Documentation

    Free vibrations on elastic support

    Overview

    The aim of this test case is to validate the following functions:

    • Elastic support

    The simulation results of SimScale were compared to the analytical results derived from [SCHAUM]. The mesh used was created using first order tetrahedralization meshing algorithm on the SimScale platform.

    Import validation project into workspace

    Geometry

    FreeVibrationsOnElasticSupport-geometry
    Geometry of the square box mass

    The square box mass has a length, width and height of 1m with upper face partitioned in to half.

    Analysis type and Domain

    Tool Type : Code_Aster

    Analysis Type : Linear static and dynamic

    Mesh and Element types :

    Case Mesh type Number of nodes Number of 3D elements Element type Analysis type Elastic support type – face EIGJ Elastic support type – face IFJH Elastic support type – combined (face EFGH)
    (A-1) linear tetrahedrals 21 26 3D isoparametric Static
    isotropic total
    (A-2) linear tetrahedrals 21 26 3D isoparametric Dynamic
    isotropic total
    (B-1) linear tetrahedrals 33 61 3D isoparametric Static isotropic total orthotropic total
    (B-2) linear tetrahedrals 33 61 3D isoparametric Static isotropic distributed orthotropic distributed
    (B-3) linear tetrahedrals 33 61 3D isoparametric Static isotropic total and distributed orthotropic total and distributed isotropic total
    FreeVibrationsOnElasticSupport-mesh-caseA
    Mesh used for the SimScale case A-1/A-2
    FreeVibrationsOnElasticSupport-mesh-caseB
    Mesh used for the SimScale case B-1/B-2/B-3

    Simulation Setup

    Material:

    • isotropic: E = 205 GPa, ν = 0.28, ρ = 10 kg/m3

    Constraints:

    Case A-1/A-2:

    • total isotropic spring stiffness of K = 9810 N/m on face EFGH

    Case B-1:

    • total isotropic spring stiffness of K = 4905 N/m on face EIGJ
    • total orthotropic spring stiffness of Kx, Ky, Kz = 4905 N/m on face IFJH

    Case B-2:

    • distributed isotropic spring stiffness of \(\frac {K}{A}\) = 9180 N/m³ on face EIGJ
    • distributed orthotropic spring stiffness of \(\frac {K_x} {A}\), \(\frac {K_y} {A}\), \(\frac {K_z} {A}\) = 9180 N/m³ on face IFJH

    Case B-3:

    • total isotropic spring stiffness of K = 1962 N/m on face EIGJ
    • total orthotropic spring stiffness of \(\frac {K_x} {A}\), \(\frac {K_y} {A}\), \(\frac {K_z} {A}\) = 1962 N/m on face IFJH
    • distributed isotropic spring stiffness of \(\frac {K}{A}\) = 3924 N/m³ on face EIGJ
    • distributed orthotropic spring stiffness of \(\frac {K_x} {A}\), \(\frac {K_y} {A}\), \(\frac {K_z} {A}\) = 3924 N/m³ on face IFJH
    • total isotropic spring stiffness of K = 1962 N/m on face EFGH

    Reference Solution

    Case A-1/B-1/B-2/B-3:
    (1)

    $$x = \frac {mg}{k} = \frac {10.(9.81)}{9810} = 0.01 m$$

    Case A-2:
    (2)

    $$x = \frac {v_o}{\omega} sin \omega t + x_o cos \omega t$$
    where,

    angular frequency, \(\omega\) = \(\sqrt \frac {k}{m}\) = \(\sqrt \frac {9810}{10}\) = 31.32 rad/s.

    initial velocity, Vo = -0.01 m/s

    position of initial release, Xo = -0.01 m

    time, 2s <= t <= 4s

    The equation (1)(2) used to solve the problem is derived in [SCHAUM].

    Results

    Comparison of the displacement dz computed on face ABCD from SimScale case A-1/B-1/B-2/B-3 with [SCHAUM] equation (1).

    Comparison of the displacement [m]
    Quantity [SCHAUM] Case A-1 Error Case B-1 Error Case B-2 Error Case B-3 Error
    x 0.01 0.01 0 0.01 0 0.01 0 0.01 0
    FreeVibrationsOnElasticSupport-result
    Comparison of the oscillations computed on face ABCD for case A-2

    Comparison of the oscillations dz computed on face ABCD from SimScale case A-2 with [SCHAUM] equation (2).

    References

    [SCHAUM] (12345) (2011)”McGraw-Hill Schaum’s outlines, Engineering Mechanics: Dynamics”, pg 271-273, N. W. Nelson, C. L. Best, W. J. McLean, Merle C. Potter

    Last updated: January 29th, 2019

    What's Next

    part of: DPM Analysis of a gas-solid fluidised bed

    Contents