Fill out the form to download

Required field
Required field
Not a valid email address
Required field


Validation Case: Free Heave Motion of a Floating Cylinder

The free heave motion of a floating cylinder validation case belongs to fluid dynamics. This test case aims to validate the following parameter:

  • Six degrees of freedom (6DoF) solver

In this project, a floating cylinder is positioned one inch off the equilibrium level. After releasing the cylinder, the transient heave decay is evaluated. The simulation results of SimScale were compared to experimental\(^1\) and theoretical\(^2\) results.


The geometry is a straight cylindrical body in a pseudo-2D water tank. The centroid of the cylinder is located in the center of the tank, at coordinates (0, 0, 0).

2d water tank heave validation case
Figure 1: Pseudo-2D water tank used for the present validation case

Details of the tank dimensions are provided in Table 1:

DimensionMeasurement \([m]\)
\(H\)2.4384 (8 feet)
Diameter of the cylinder0.1524 (6 inches)
Length of the cylinder (z-direction)0.2
Table 1: Dimensions of the water tank and cylinder


SimScale requires a domain with volume to perform simulations. Therefore, we are going to use a pseudo-2D approach for this validation case.

The meshes used in this project contain a single cell along the z-direction. An empty 2D boundary condition will be applied to both sides of the domain, so the z-direction won’t be resolved.

Analysis Type and Mesh

Tool Type: OpenFOAM®

Analysis Type: Multiphase

Turbulence Model: Laminar

Mesh and Element Types: The mesh used in this validation case is a hexahedral mesh created locally and imported into SimScale. In Table 2, an outline of the cases is presented:

CaseMesh TypeCellsElement TypeTranslationRotation
1-degree-of-freedom motionblockMesh842003D hexahedralLinear (x-direction)Fixed orientation (no rotation)
3-degree-of-freedom motionblockMesh842003D hexahedralPlanar (x-y plane, normal to the z-axis)About the z-axis
Table 2: Overview of the mesh and the motion constraints of the cylinder

Find below the 84200 cells hexahedral mesh. It contains a single cell in the z-direction.

cylinder 2d mesh representation
Figure 2: Imported hexahedral mesh used for the 1 and 3 DoF cases, highlighting the discretization of the cylinder

Simulation Setup


  • Air
    • Viscosity model: Newtonian
    • \((\nu)\) Kinematic viscosity: 1.55e-5 \(m^2/s\)
    • \((\rho)\) Density: 1.192 \(kg/m^3\)
  • Water
    • Viscosity model: Newtonian
    • \((\nu)\) Kinematic viscosity: 1.06e-6 \(m^2/s\)
    • \((\rho)\) Density: 999 \(kg/m^3\)
  • The surface tension between air and water is set to 0.07 \(N/m\)

Boundary Conditions:

Figure 3 will be used as a reference for the definition of the boundary conditions:

face names heave motion boundary condition
Figure 3: Nomenclature of the faces, used to define the boundary conditions

The following boundary conditions are used:

BoundaryBoundary TypeVelocity \([m/s]\)Pressure \([Pa]\)Phase Fraction
TopCustomPressure inlet-outlet velocityTotal pressure (0)Inlet-outlet
Sides and BottomWallSlipZero gradientZero gradient
Front and BackEmpty 2DEmpty 2DEmpty 2DEmpty 2D
Cylinder wallWallNo-slipZero gradientZero gradient
Table 3: Summary of the boundary conditions used for all cases

Solid Body Motion:

  • Center of mass: coordinates (0, 0, 0)
  • Mass: 1.824 \(kg\)
  • \((\rho)\) Density: 1000 \(kg/m^3\)
  • Gravity: 9.81 \(m/s^2\) in the negative x-direction
  • Motion constraints as defined in Table 2

The mass of the cylinder body is such that, at equilibrium, exactly half of the cylinder is immersed.

Initial Conditions

In the experimental setup\(^1\), the cylinder is initially displaced by 1 inch below the equilibrium level. After releasing the cylinder, it’s free to move only in the heave direction.

Figure 4 shows the initial condition in SimScale, to replicate this effect:

initial condition multiphase heave validation
Figure 4: Initialization of the water domain to simulate the heave motion

Result Comparison

SimScale multiphase simulation results are compared to experimental\(^1\) and theoretical\(^2\) data. The phenomenon of interest is the transient heave decay response. In both references, the constraints ensure a pure heave motion (1DoF).

A mesh independence study was conducted with three meshes, to assess the mesh effects on the results. Moreover, besides the 1DoF simulation, we also present simulation results modeling 3DoF (free translation in the x and y-directions and free rotation about the z-axis).

In all of the plots shown below, the displacements have been normalized in the following way:

$$Normalized\ displacement = \frac {x}{x_0}\tag{1}$$

Where \(x_0\) is the initial shift from equilibrium (one inch) and \(x\) is the current shift from equilibrium for any given instant. When the normalized displacement stabilizes at 0, the system reaches equilibrium.

Furthermore, time was non-dimensionalized in the following way:

$$Nondimensionalized\ time = t\sqrt {\frac{g}{a}}\tag{2}$$

Where \(t\) is time, in seconds, \(g\) is the gravitational acceleration in \(m/s^2\), and \(a\) is the radius of the cylinder, in meters.

Firstly, a comparison of the heave response from different meshes is given in Figure 5, using a 1DoF approach:

mesh independence study for a validation case
Figure 5: Mesh independence study, showing the mesh effects on the results

The figure shows that, using a coarse mesh, the baseline heave displacement deviates a lot from the zero line. The moderate mesh also has minor deviations, while the fine mesh attains the best oscillation behavior about the baseline, due to the high resolution of the air-water interface.

The comparison of numerical simulation, using a fine mesh, with theoretical and experimental data is presented in Figure 6. Great agreement was observed:

heave multiphase analysis result comparison
Figure 6: Heave decay response comparison with experimental and theoretical data for 1DOF

Finally, comparing the simulation results from SimScale for 1DoF and 3DoF, we get:

comparison between different degrees of freedom
Figure 7: Comparison between simulation results for 1 and 3DoF. The additional degrees of freedom didn’t alter the heave decay response.

The animation below shows SimScale results for the 1DoF simulation. Red represents the water phase.

heave decay motion for 1DoF
Animation 1: Animation highlighting the heave decay motion, for one degree of freedom

Last updated: August 24th, 2020

Data Privacy