Healthcare Industry: Between Traditions and Innovation

Healthcare SimScale

The healthcare industry needs innovation; and improving quality of life through advanced technologies adoption is the essence of progress. Fast access to market with better products is a key challenge in the development of medical devices, orthopaedics and implants.

Vital technologies for life care

The world’s population is aging, creating pressure in increasing quality and diversity of healthcare industry services. Despite challenges related to decreasing financial support, mandatory cost control, growing competition in the market and clinical testing constraints, the healthcare industry is one of the most important beneficiaries of the advantages offered by digital revolution. Engineering platforms and simulation analysis particularly have a large applicability in the healthcare field, from anatomical and physiological elements modelling, to improving the medical procedures, surgery training, and medical education [1].

Smart Medical & Hospital equipment

Healthcare Industry: Between Traditions and InnovationThe medical device industry faces many challenges related to global competition increasing, proven efficacy and highest possible production quality. To meet these demands, medical device producers must improve and manage high quality. Conformity with rigorous system regulations is also a must [2].

Simulation offers many benefits in medical devices design and testing. Medical researchers and engineers are able to accurately optimize equipment or appliance designs in different conditions. Engineering simulation provides better understanding of the mechanical behavior of devices, depending on shape and composition, or better tailored patient-specific implants. Used as part of device prototyping, simulation reduces time to market and generates valuable data about implant interactions with the body. 3D image data provided by magnetic resonance scanners or computed tomography (CT) are used to reconstruct complex anatomical body structures by iterative simulation analysis. Today, smart medical equipment embeds multifunctional electronic and microelectronic capabilities, growing patient safety and reducing subjective impact of medical staff.

Diagnostic IoT devices & 4P Medicine

medical personal devices Part of systems biology emerging trends, P4 Medicine is a new concept bringing Predictive, Preventive, Personalized and Participatory elements. P4 Medicine main objectives are to quantify wellness and demystify disease [3]. P4 medicine will make blood a diagnostic way for determining individual health status, will open new approaches in drug target discovery, and will save millions of lives. Opening the road to the Medical IoT (Internet of Things) depends on better design and fast industry assimilation. Like in all other electronics applications, simulation is a proven way to optimize implantable or standard personal diagnostic devices.

Advanced Orthopaedics Technics in Healthcare

prosthetic armOrthopaedic researchers are extending the life of implants and developing innovative replacement therapies for aging hips, spines, shoulders, knees, or dental implants. A critical particularity for orthopaedic development is perfect fitting with bodies’ physiology. Any artificial component requests perfect fit design, prototyping, testing and manufacturing process and light fabric materials compatible with surgical procedures.

„In silico medicine” or „computational medicine” is the application of “in silico” research in computer simulation for diagnosis, treatment, or prevention of a disease. More specifically, in silico medicine is characterized by modelling, simulation, and visualization of biological and medical processes in computers with the goal of simulating real biological processes in a virtual environment [4]. Though no two people are similar, prosthesis models development should fit a population majority. The alternative is to customize the implant through 3-D printing.

Cardiac Device Simulation

Critical for cardiac devices development is the study of hemodynamics, using engineering simulation and advanced fluid–structure interaction modelling. Implantable cardiovascular devices like stents, coils, heart valves and pacemakers are saving hundreds of thousand lives every year. The main challenges here are complex and very strict regulations and costly and slowly pre-clinical testing in order to fit standards compliance. Benchmarking new cardiac devices in healthcare industry could be radically improved through model analysis or in silico medicine. CAE tools could provide quickly and less expansible multiple scenarios until fitting compliance conditions.

3D Print Implants and Dental SurgeryHealthcare Industry: Between Traditions and Innovation

Modern orthopedic procedures are developed using additive manufacturing. Despite molding procedures being used for more than 15 years, new design and manufacturing facilities offered by 3D printing open a large spectrum of advantages. The main trabecular products are hip cups, shoulder implants, knee tibial plates, and mini-hip stems [5]. Using engineering simulation for prototyping and 3D printing implies significant cost reductions. If the traditional orthopaedic industry used 1,500 – 2,000 tons of titanium in 2015, additive manufacturing required less than 3%.

Based in essence on the same simulation and additive procedures, dental implant surgery is the most frequently demanded dental technique to replace untreatable teeth.

SimScale Platform: A Perfect Fit for Healthcare

With SimScale, the innovation within the healthcare industry can be combined with improved design reliability and more affordable development process. The platform enables simulation of healthcare and medical products including medical equipment, diagnostic and personalized devices, orthopaedic support, and dental implants. Using virtual models reduces the number of prototypes needed. Engineering simulation enables healthcare testing products for use in a wide variety of conditions. It enables innovation while maximizing reliability.

Combining structural mechanics, CFD, and thermal analyses, engineers working in healthcare can virtually test and improve devices designs while reducing production costs. This practice reduces the time for approval — along with time to market.

But more practical is to see simulations in real examples. Here are some interesting projects for healthcare simulation projects described in the SimScale Public Projects:

Safety First – Human skull impact – Helmet manufacturing is very important for human body protection in many activities. In this project, the impact of a human skull with and without helmet has been simulated by SimScale specialists. The geometry of skull provided by open public source has been edited and cleaned before uploading to the platform. Due to symmetry, only one half of the skull was considered for the analysis. A nonlinear dynamic analysis was performed for the impact study. Initial velocity of 6.944 m/s (25 km/h) was adopted and the vonMises stress and total nonlinear strain magnitude in skull at highest impact point help you determine helmet and skull damage at maximum impact point.

Skull impact animation

SS021 SS Femur

vonMises stress in femur bone

Human bones as critical structure – Femur stress analysisThe femur is the longest, heaviest and strongest bone in the human body, supporting all of its weight during walking and running. On its proximal end, it has a hip joint with a spherical shape known as “head of femur” which allows it to move in almost any direction. On its distal end, it forms a knee joint with lower leg. In this project, advanced static analysis was selected as analysis type with nonlinearity set to false. The bone was fixed at the distal end whereas the force load in negative z-direction was applied on the proximal end. Three load cases were considered; load of 10, 100 and 500 N.

Healthcare equipment improvements – Internal airflow in a medical device

Internal airflow in a medical device

Internal airflow in a medical device

Here is an example of how the internal airflow through a medical device can be analysed, serving to device optimization depending on velocity peaks. The fluid volume was extracted via a local CAD software. The simulation was set up applying a fixed volume flux at the inlet and a zero-gradient boundary condition at the outlet. A k-omega-SST model has been used to account for turbulence effects. The steady-state simulation needed around 320 iterations to reach a satisfying convergence criteria which took around 30 minutes on a 4-core machine. The results are used to optimize the design in terms of the velocity peaks and the pressure drop of the device.

If you’d like to learn more about how you can use SimScale for simulating your design, take a look at our website.



[1] – Healthcare Simulation and its Potential Areas and Future Trends – Joseph Barjis, Department of Systems Engineering Delft University of Technology, SCS M&S Magazine, January 2011

[2] – Using Simulation in Medical Device Design“- Gareth James, Orthopaedic Design and Technology, November 2015

[3] – P4 Medicine”, Institute for Systems Biology

[4] – “Project Success Stories – In silico medicine reaches the clinic“, European Commission CORDIS, May 2013

[5] – Additive Manufacturing Status in the Orthopaedics Industry – Ali Madani, May 2016

SimScale is the world's first cloud-based simulation platform, enabling you to perform CFD, FEA, or thermal analyses. Sign up for the 14-day free trial and join the community of 70 000 engineers and designers. No payment data required.